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Summary 

 

The 3D Tau-p transform is of vital significance for 

processing seismic data acquired with modern wide 

azimuth recording systems. This paper presents a 3D high 

resolution Tau-p transform based on the matching pursuit 

algorithm. 3D seismic data are first transformed to the 

frequency domain, and a sparse set of f-px-py coefficients 

are iteratively inverted by matching pursuit. When the data 

are spatially aliased, the inversion results are weighted by a 

total energy mask. The numerical examples demonstrate 

this scheme achieves a high resolution Tau-p transform that 

represents the input data accurately and handles spatial 

aliasing properly.  

 

Introduction 

 

The Tau-p transform, also called the linear Radon 

transform, has been a very important tool in seismic data 

processing. Its applications range from linear noise removal 

to de-ghosting and data interpolation/regularization. The 

Tau-p transform is usually formulated as an inverse 

problem to solve for the Tau-p coefficients that best 

represent the input data under certain criteria, 

       Lmd  .                                                      (1) 

In the above equation, m is the tau-p model and L is the 

transform operator. Unlike the Fourier transform, the basis 

for the Tau-p transform is not orthogonal. Therefore 

traditional L2 norm based inversion algorithms provide a 

low resolution transformation, especially when the data 

sampling and aperture are not ideal. Various authors 

developed 2D high resolution Radon transform schemes 

(Thorson and Claerbout 1985; Sacchi and Ulrych 1995; 

Cary, 1998; Trad et al., 2003, Wang et al., 2009) by 

imposing sparsity constraints in the time or frequency 

domain, and the above issue has been effectively mitigated 

for 2D seismic data. 

 

Though 2D Tau-p transform has been widely used in 

seismic processing, its 2D plane wave assumption cannot 

handle the 3D curvature variations with azimuth present in 

3D seismic data. Therefore the Tau-p transform needs to be 

extended to 3D to process 3D seismic data, especially those 

data acquired with wide azimuth recording systems. Zhang 

and Lu (2013) developed an accelerated high resolution 3D 

Tau-p transform with an efficient spatial transform scheme 

followed by iterative thresholding of the inverted Tau-p 

coefficients. Wang and Nimsaila (2014) proposed a fast 

progressive sparse Tau-p transform: a low-rank 

optimization is applied for inversion stability and 

efficiency, and aliasing is handled by progressively driving 

the inversion for high frequencies with the low frequency 

results. 

 

This paper proposes a matching pursuit method for 3D 

Tau-p transform. The matching pursuit algorithm provides 

an approximate L0 norm solution to inverse problems, and 

has been very successful with FK domain seismic 

interpolation/regularization (Xu et al., 2005;Ozbek et al., 

2010; Nguyen and Winnett, 2011; Hollander et al., 2012; 

Schonewille et al., 2013). We choose a matching pursuit 

approach because of its proven performance in the FK 

context, and because it has a straightforward 

implementation. Also, to properly handle spatial aliasing, 

the total energy of each p trace is computed and used as a 

mask for the matching pursuit solution. 

 

Method 

 

The matching pursuit algorithm builds up a sparse solution 

to the inverse problem by iteratively picking the strongest 

component in the model residue. For the Tau-p transform 

implementation, matching pursuit is implemented on 

frequency slices after the input data are transformed into 

the frequency domain. 

 

In the frequency domain, the terms in equation 1 are 
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The adjoint transform is formulated as 
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The algorithm is implemented as follows: 

1.  Initialize the data residual with the input data 

2.  Calculate the adjoint model by applying the adjoint 

of operator L to the residual 

3.  Select the strongest component in the adjoint model 

and add it to the estimated solution 

4.  Inverse transform the selected component into the 

data (space) domain, and update the data residual 

by subtracting this transformed component 

5.  Go to step 2 if residual level is not low enough. 

Otherwise exit iteration. 

 

To avoid a large number of temporal Fourier transform 

operations, the input seismic data are transformed into the 
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frequency space domain, and matching pursuit iterations 

are implemented for each frequency slice. 

 

In 3D seismic acquisition, the seismic data are usually 

aliased in the crossline direction, and spatial aliasing brings 

a serious challenge to the Tau-p transform. To overcome 

this issue, for each px, py trace we compute the total energy 

during the matching pursuit iterations, creating a mask over 

the entire px, py space. Then in later iterations, this mask is 

used as a model-space weight for the inversion.  This 

process is repeated periodically throughout the inversion 

iterations until a satisfactory residual is achieved. 

 

Figures 1- 3 show a simple synthetic example to compare 

Tau-p transform results obtained with the matching pursuit 

algorithm and a Cauchy-like sparse inversion scheme with 

some similarities to that of Sacchi and Ulrych (1995). As 

illustrated in Figure 2, the matching pursuit algorithm 

delivers a Tau-p transform with higher resolution and more 

accurate amplitude. Also these two Tau-p panels are 

transformed back to seismic traces to check the fidelity of 

the forward transform by checking the round-trip errors. 

Figure 3 shows the round-trip errors scaled by 10 displayed 

at the same range as Figure 1. The worst error amplitude of 

the Cauchy-like approach is over ten times that for the 

matching pursuit scheme. This test demonstrates that 

relative to the Cauchy-like approach shown here the 

matching pursuit algorithm provides a Tau-p transform that 

has higher resolution and represents the data more 

accurately. 

 

 
 Figure 1: synthetic data with 4 linear events 

 

 

 
Figure 2: Tau-p panels for a) matching pursuit 

method and b) Cauchy-like method 

 

 
Figure 3: Tau-p transform round-trip error for a) 

match pursuit method and b) Cauchy-like method 

 

Figures 4-6 show a 3D synthetic example to illustrate the 

performance of this anti-aliasing scheme. The trace spacing 

in the inline and crossline direction is 10 m, and the 

wavelet is a Ricker wavelet with maximum frequency 50 

Hz. The dense crossline sampling in Figure 4 is decimated 

to 30 m to generate an aliased input for the Tau-p 

transform, and the Tau-p coefficients are used to interpolate 

the data back to the dense geometry. Figure 5 shows that 

without the anti-aliasing scheme, a significant amount of 

error is introduced at the interpolated trace locations. By 

contrast, the error at the input trace locations is very low, 

which indicates a good data match in Tau-p transform. 

When the anti-aliasing step is applied, the interpolation 

error is greatly reduced, as Figure 6 shows.  
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Figure 4: inline and crossline views of the synthetic 

data prior to crossline downsampling from 10 m to 

30 m.  

 

 

 
Figure 5: interpolation error for Tau-p without anti-aliasing 

 

 

 
Figure 6: interpolation error for Tau-p with anti-aliasing 

 

 

 

 

Field data example 

 

We applied this sparse Tau-p transform algorithm to a 

deep-water 3D marine shot gather to test its performance 

on interpolation.  Acquisition consisted of ten cables with a 

spacing of 150 m, and 12.5 m channel spacing along the 

cable. For the test, the data is first decimated by a factor of 

two in the cable direction to generate a sparse dataset.  As 

the three-slice view in Figure 7 shows the dataset is badly 

sampled in both the inline and crossline direction. The FK 

spectrum in Figure 8 shows the data is clearly aliased in the 

inline direction.  

 

The high resolution 3D Tau-p transform is applied to the 

decimated data, and the resultant Tau-p coefficients are 

used to interpolate back to the original dense sampling in 

the cable direction, and compared with the true dense data. 

Figures 9 and 10 demonstrate the interpolation results for a 

near and a far cable.  Note that although this is a 3D 

transform, the interpolation was performed only in one (the 

inline) direction, not the very sparse crossline direction. 

 

We also test the interpolation performance for different 

percentages of the Tau-p coefficient threshold. As shown in 

Figure 11 for the center part of the data (trace 25-80) the 

RMS interpolation error drops to 10-15% if we use 0.5% of 

the Tau-p coefficients, and increasing the threshold 

percentage to 1% brings little improvement to the error 

level. There is no significant difference for the near and far 

cables. The valleys of the "V" shapes are locations where 

input traces are available and we have data control to reach 

the best interpolation fit. The interpolation error on the near 

traces is at or below 10%.  This is a 2 to 1 interpolation, 

and the crossline direction is very badly aliased (with 150 

cable spacing). Overall we think the interpolation 

performance is reasonable considering the input data is 

seriously aliased in both directions.   

  
Figure 7: 3D sparse input data for interpolation The 

average cable spacing is 150, and after decimation 

the group interval is 25 m. 



High resolution 3D Tau-p transform 

 
Figure 8: FK spectrum of the decimated input in the 

inline direction 

 
Figure 9: Interpolation for a far cable: true dense 

cable (left), interpolated dense cable (center) and 

the interpolation error (right). 

 

 
Figure 10: Interpolation for a near cable: true dense 

cable (left), interpolated dense cable (center) and the 

interpolation error (right). 

 

 
Figure 11: interpolation error vs traces for two different 

threshold percentages (0.5% and 1%) of Tau-p coefficients 

for interpolation 

 

Conclusions 

 

A high resolution 3D Tau-p transform scheme is developed 

to process sparse 3D seismic data. With the matching 

pursuit algorithm and an anti-aliasing strategy based on 

total energy in the Tau-p plane, a high resolution Tau-p 

representation of the aliased 3D data can be achieved.  

Numerical examples demonstrate improved resolution in 

the Tau-p transform and a more accurate data 

representation. The application of this scheme to field data 

interpolation/regularization shows promising results. 
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