SAUNA-III

A fully automated radionuclide continuous monitoring system

SAUNA (Swedish Automatic Unit for Noble Gas Acquisition) is a fully automatic system for detection of radioactive xenon gas in the ambient atmosphere. SAUNA III performs uninterrupted sampling, processing, quantification, and activity measurement of the four xenon isotopes 133Xe, 135Xe, 133mXe, and 131mXe. The SAUNA system comprises a sampling system, processing system, quantification system, detector transfer system, detection system, UPS system and a State of Health system for system supervision. The instrument has a modular design and everything except the detection system is installed in 19” racks.

Future proof

Existing SAUNA-II systems can easily be upgraded to SAUNA-III by replacing a few modules. The close strategic cooperation with Swedish Defence Research Agency (FOI), who has world-leading expertise in the field of radio-xenon detection and analysis, vouch for continuously improvements of the system, which will give the user better performance and data availability. This will maintain our position as the No. 1 supplier of radio-nuclide monitoring equipment.

Key Features

- 6 hours data resolution gives better source localization
- Nitrogen used as carrier gas lowers operational cost
- Highly sensitive beta-gamma detection gives low detection limits for 133Xe, 135Xe, 133mXe, and 131mXe
- Automatic adjustment of detector energy drift
- Remote operation and diagnosis
- Data continuously transferred to user

Wherever and whenever you need us

Our experienced service engineers maintain and support all installations globally at least once per year. Thanks to that we can sustain our excellent operational track record and historically highest system uptime; some customers have 99% uptime. We offer a variety of service contract levels to meet our customers’ demands for world-class services.

Today we have 36 operational systems worldwide.
Specifcation:

The comparison between the SAUNA-II and SAUNA-III systems shows that we have managed to increase the SAUNA-III performance significantly. For example:

- The number of samples per 24 hours have increased to 4 from previously 2.
- The stable xenon sample is 3.25 ml after a cycle of <6 hrs instead of 1.25 after <12 hrs.
- The Minimum Detectable Concentration (MDC) has also been improved.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SAUNA-II</th>
<th>SAUNA-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples/24 h</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Airflow, m3/hour</td>
<td>1.44</td>
<td>6</td>
</tr>
<tr>
<td>Stable xenon/sample, cm3 at STP</td>
<td>1.25</td>
<td>3.25</td>
</tr>
<tr>
<td>Stable xenon energy yield, ml/kW</td>
<td>0.83</td>
<td>3.51</td>
</tr>
<tr>
<td>Stable xenon extraction coefficient</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>MDC Xe-133, mBq/m3</td>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td>MDC Xe-133m, mBq/m3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MDC Xe-131m, mBq/m3</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>MDC Xe-135, mBq/m3</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Radon removal coefficient</td>
<td>QC checked</td>
<td>>10^5</td>
</tr>
<tr>
<td>Energy calibration stability</td>
<td>QC checked</td>
<td>QC checked</td>
</tr>
<tr>
<td>Historical Data Availability (Jan 1, 2013- Jan 31, 2015), %</td>
<td>>90(^1)</td>
<td>TBD</td>
</tr>
<tr>
<td>Detector technology</td>
<td>Plastic/NaI</td>
<td>Plastic/NaI</td>
</tr>
<tr>
<td>Cross-contamination between subsequent samples</td>
<td><0.1%</td>
<td>TBD</td>
</tr>
<tr>
<td>Memory effect, %</td>
<td><0.1%</td>
<td><0.06%</td>
</tr>
<tr>
<td>Requires certified calibration sources</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Consumables</td>
<td>0.3–0.45 m3 Helium/day</td>
<td>0.375 m3 Nitrogen/day</td>
</tr>
<tr>
<td>Power consumption, mean (kW)</td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td>Power consumption, peak (kW)</td>
<td>5.5</td>
<td>6</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>~1800</td>
<td>~1800</td>
</tr>
<tr>
<td>Footprint of detector unit (m)</td>
<td>1.2 m × 0.6</td>
<td>1.2 m × 0.6</td>
</tr>
<tr>
<td>Footprint of 19" racks (m)</td>
<td>1.8 × 0.8</td>
<td>1.8 × 0.8</td>
</tr>
<tr>
<td>No of systems installed</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Available for sale</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Available for installation</td>
<td>Yes</td>
<td>Q4/18</td>
</tr>
</tbody>
</table>

\(^1\)Independent customers with Gold service contracts achieve >98%.

About us

Scienta Sensor Systems markets, installs, and services ultrasensitive systems for detection of radioactive xenon in the atmosphere, e.g. for detection of nuclear explosions or malfunctioning nuclear plants. Scienta has the biggest installation base of radio-nuclide systems that have been installed in monitoring stations and networks worldwide. The company is engaged in a long term strategic partnership with the Swedish Defense Research Agency (FOI) in the development of technologies for the next generation of systems.