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Summary 

 

Adaptive de-ghosting estimates the parameters of the 

physical process determining the ghost reflection, which 

are not generally precisely known. By application of 

incorrect de-ghosting parameters, the ghost is only partially 

removed and a residual ghost energy train manifests as a 

sequence of peaks and troughs with periodicity and 

amplitudes determined by the de-ghosting parameters. This 

residual ghost energy is often referred to as “ringing”, in 

data processing practice. The kurtosis of the de-ghosted 

data autocorrelation is strongly sensitive to the presence of 

this residual ghost energy. In this paper, we discuss the 

practice of adaptive de-ghosting by kurtosis maximization 

(Grion et al., 2015). We highlight the main features of the 

proposed algorithm using a simple synthetic example, and 

then present and discuss a field data application result.  

 

Introduction 

 

The sea-surface reflection coefficient can be frequency-

dependent (see for example Clay and Medwin, 1977; Orji 

et al., 2013) and it is in general not a-priori known, the 

exception being the case of a perfectly calm sea-surface. 

Also, the receiver depth is subject to positioning 

inaccuracies, and the receiver depth measured during 

acquisition is subject to spatial interpolation and time 

averaging. Additionally, the shallow water column between 

the receiver and the sea surface is where the water velocity 

is most subject to variability, being closest to the surface 

and its associated temperature and salinity changes due to 

weather and tides. Sea surface reflectivity, water velocity 

and receiver depth are known with a good degree of 

approximation that is sufficient for a variety of processing 

steps, like multiple attenuation and migration, but de-

ghosting is highly sensitive to these parameters. This is due 

to the combination of two factors: the strong amplitude and 

phase changes that ghost interference imposes on seismic 

data, and the fact that in the frequency domain these 

changes are at their strongest in correspondence with the 

ghost notches, where the signal to noise ratio of the 

recorded data is at its minimum. There is therefore a 

general need to estimate a physical model for the ghost 

reflection as part of a de-ghosting process. 

 

Wang et al. (2013) discuss a bootstrap de-ghosting 

approach that requires the joint use of pre-migration data 

and its mirror, and optimizes the time-delay between 

primary and ghost. The authors do not attempt the 

estimation of the reflection coefficient. Masoomzadeh et al. 

(2013) point out that de-ghosting errors can be reduced by 

using a stochastic search for the optimum set of de-

ghosting parameters that includes both delay-times and 

reflection coefficients that can vary with frequency. 

However, the search criteria or, in other words the 

objective function for optimisation of parameters, is not 

mentioned. Grion et al. (2013) compare de-ghosting results 

in the presence of calm and rough seas, and note that an 

adaptive de-ghosting that includes a statistical element is 

able to compensate rough sea effects for structural imaging 

purposes.  

 

Adaptive de-ghosting by kurtosis maximization 

 

In adaptive de-ghosting, it is important to stress that the 

aim is the  estimation of "effective" parameters that best 

fulfil the objective of removing ghost reflections. These 

effective parameters are certainly linked to the physical 

properties of the water column above the streamer array, 

but they are also a function of ghost modelling 

assumptions, for example:  

 

 Constant water velocity. 

 Specular reflection at the sea surface (scattering is 

ignored). 

 2D wave-field propagation. 

 Known receiver locations. 

 

The physical entities determining the receiver ghost are the 

sea surface, the receiver depth and the water velocity and 

for de-ghosting purposes they can be represented by an 

effective ghost delay-time and sea surface reflection 

coefficient. The ghost model is:  

 

        ( )      ,  
 
where r(f) is the frequency-dependent reflection coefficient, 

  is the angular frequency and    is the delay time 

between primary and ghost. This model is defined in the   

 -  domain to accommodate 2D wavefield propagation, 

and    is therefore a function of the cable depth profile, 

water velocity and of the propagation angle. For the 

purpose of de-ghosting optimisation, r(f) is assumed to be 

close to 1 at  =0 and for higher frequencies it can either 

follow an a-priori parametric function (see e.g. Clay and 

Medwin, 1977) or it can be estimated at a limited number 

of frequencies, typically the notch frequencies, and then 

interpolated.  
 

The optimisation metric we employ is based on the kurtosis 

of the de-ghosted-data autocorrelation. The kurtosis is a 

statistical measure often used to associate a measure of 

"peakedness" to a random variable x with mean  , expected  
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Figure 1: Synthetic data representative of a common-p section, 

where the delay time between ghost and primary is constant. 
Primary events appear as white pulses, and the associated black 

ghosts have a 40msec delay with respect to the primaries. 

 

Figure 2: Amplitude spectra of signal and noise levels in  Figure 1 

 

to be non-Gaussian, and it is defined as: 

 

     
  

  
,  (1) 

 

where     [(   )
 ]   is the 4th order central moment 

of x, and   its standard deviation. Various authors have 

considered the kurtosis for wavelet estimation purposes 

(e.g. Cambois and Hargreaves, 1994; Van der Baan, 2008).  

 

To illustrate the use of the proposed kurtosis-based metric 

to assess de-ghosting quality, we consider the following 

example. Figure 1 shows a synthetic dataset consisting of a 

sequence of primaries and ghosts. The delay of the ghosts 

with respect to primaries is 40ms, as expected from a 30m 

cable depth, and the reflection coefficient is -0.95. The data 

is contaminated by Gaussian white noise, and the amplitude 

spectra of signal and noise are shown in Figure 2. The  

 

 
Figure 3: Kurtosis of delay-time estimation (top) and reflection 

coefficient estimation (bottom) 

 

signal to noise ratio is variable with frequency, and has 

maximum values in the range 10-30dB in correspondence 

to the constructive interference between primary and ghost, 

and minimum values in the range 2dB to -7dB in 

correspondence with the ghost notches. The presence of 

noise has a negative effect on the estimation of de-ghosting 

parameters, but by working in sliding windows with a 

spatial size of about one hundred traces, and time length of 

the order of several hundreds of milliseconds, the effect of 

noise can be reduced. The data in  Figure 1 represents one 

such window, and in a real data scenario with a constant 

depth streamer acquisition it would be part of a common-p 

section. The window size is a compromise between 

resolution – accounting for rapid changes in the ghost – and 

obtaining a robust estimate of parameters. 

 

Figure 3 (top) shows the kurtosis values obtained when de-

ghosting the synthetic data using the correct value for the 

reflection coefficient, and a range of delay-times between 

primary and ghost with respect to the correct value of 

40ms. The correct value of 0ms is detected with high 
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Figure 4: Kurtosis of the joint estimation of delay-time and 

reflection coefficient. 
 

 
Figure 5: De-ghosting result for the data in  Figure 1, after joint 

optimisation of delay-time and reflection coefficient based on the 

kurtosis values shown in Figure 4.  

 

resolution. Figure 3 (bottom) shows the values obtained 

when de-ghosting the data using the correct delay-time and 

a variety of reflection coefficient absolute values in the 

range 0.7 to 1. The correct value of 0.95 is detected, 

although resolution is lower than for the time delay 

optimisation case. This is a general conclusion; the 

reflection coefficient is more difficult to estimate than the 

delay-time between primary and ghost.  

 

To conclude this synthetic data example, Figure 5 shows 

the kurtosis values for the case of joint optimisation of 

reflection coefficient and delay-time. It can be noted that 

the delay-time optimisation result is broadly independent 

from the knowledge of the exact reflection coefficient 

value, while the opposite does not hold. Therefore, this 

optimisation problem can be solved sequentially, with the 

kinematic aspect of the problem (the delay-time) solved 

first, followed by the amplitude aspect (the reflection 

coefficient).  

 

The synthetic example shown refers to a constant cable 

depth acquisition. For de-ghosting optimisation purposes, it 

is important that the recorded data is transformed to a 

domain where the ghost parameters are theoretically 

homogeneous and the domain dimensions are large, in 

order to have the statistical redundancy necessary for a 

robust estimate. The common-p domain satisfies this 

requirement for the constant streamer depth case, and 

appears particularly attractive for reflection coefficient 

optimization, given its higher sensitivity to noise. However, 

optimisation can also be carried out on  -  transformed 

common-shot gathers, if shot-by shot optimization is 

required. The de-ghosting optimization approach discussed 

here is general, and can be applied also in the case of 

slanted streamer de-ghosting or variable depth streamer de-

ghosting, after an appropriate domain transformation.  

 

Example 

 

We now use field data from a 2D line acquired at a constant 

30m cable depth in rough sea conditions, with a significant 

wave height of 3m. Figure 6 shows NMO stack sections 

before multiple attenuation, obtained using pre-stack 

deterministic de-ghosting  (left) and adaptive de-ghosting 

(right). In the case of deterministic de-ghosting, a constant 

reflection coefficient value of -0.9 is chosen in order to 

achieve a smooth average amplitude spectrum in 

correspondence to the first ghost notch at 25Hz, while the 

ghost delay-time is determined by the average cable depth 

during acquisition. For the adaptive de-ghosting, a single 

frequency-dependent reflection coefficient function was 

adaptively estimated for each p-section, while the delay-

time was estimated in sliding and overlapping time-space 

windows within each common-p section. In Figure 6, a 

comparison of the two results, expecially in the time range 

0.5 to 1s, highlights the presence of residual ghost energy 

in the deterministic result (left), that is not present in the 

adaptive result (right). The autocorrelation of the two 

stacked sections confirms the presence of residual ghost 

energy in the deterministic result with a period consistent 

with the ghost period at vertical incidence (40msec).   

 

Figure 7 shows a further comparison of stack sections and 

autocorrelations obtained using deterministic (left) and 

adaptive (right) de-ghosting, followed by demultiple. We 

observe that demultiple effectively reduces the amount of 

residual ghost energy in the deterministic result. This is 

partly due to the fact that ringing associated with multiple 

events is partially removed by the demultiple, and partly 

due to the adaptive nature of the shallow water demultiple 

process used, which employs operators derived from the 

data itself. Nevertheless, the advantage of adaptive over 
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deterministic de-ghosting is confirmed even after 

demultiple, both in terms of stack coherency and 

autocorrelation. In general, we expect that adaptive de-

ghosting will allow for more constrained adaptive 

processes in the post-de-ghosting stages. 

 

Conclusions 

 

The parameters of the physical process determining the 

ghost reflection are not precisely a-priori known, and de-

ghosting is highly sensitive to these parameters. In the 

context of parametric adaptive de-ghosting, tests on 

synthetic and real data suggest that the kurtosis is a useful 

metric in assessing de-ghosting quality and can form the 

basis of an objective function for an optimisation 

algorithm.  

 

The adaptive procedure proposed can be sequenced in two 

steps. The optimisation of the ghost delay-time is robust to 

errors in the reflection coefficient and to noise. Therefore, 

it should be performed first.  The reflection coefficient 

estimate is more sensitive to noise and requires the delay-

time to be optimized in advance, and can therefore be 

carried out as a second step. A real data example 

demonstrates the applicability of the proposed method. 
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Figure 6: NMO stacks (top)  and their autocorrelations (bottom) before demultiple, with deterministic de-ghosting (left) and adaptive de-ghosting 
(right).  

 

Figure 7 : NMO stacks (top) and their autocorrelations (bottom) after demultiple, with deterministic de-ghosting (left) and adaptive de-ghosting 

(right).  
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