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Summary 

 
Velocity auto-picking can reduce time spent on processing 

large volumes of seismic data and increase the number of 

CMP gathers that are picked in a project. 

 

Many velocity auto-pickers have been developed but few, 

if any, have utilized the power of unsupervised machine 

learning. Machine learning is an emerging technology for 

the solution of difficult problems.  

  

A new technique using seismic attributes in conjunction 

with an unsupervised machine learning clustering algorithm 

has been developed. The results on both marine and land 

datasets has shown that this method could potentially 

reduce the time spent on manual-picking, thus driving 

down the cost of processing a dataset. 

 

Introduction 

 

Many authors have developed methods in the realm of 

velocity auto-picking. Semblance-based approaches have 

been developed (Toldi, 1989) as well as an AVO-based 

approach (Swan, 2001; Ratcliffe & Roberts, 2003), 

however each of these approaches has its issues. 

Semblance-based approaches are very vulnerable to noise 

in the CMP gathers, whereas testing has shown that the 

AVO-based approach requires an initial velocity estimate 

within 5% of the correct velocity.  

 

In Toldi’s paper (Toldi, 1989), a semblance-based auto-

picker was formed using both semblance and what is 

referred to as stack power. Stack power is used as an 

objective function and is maximized with respect to 

velocity, creating an auto-picked velocity for the entire 

survey. Differently from the method proposed in this paper, 

Toldi’s method assumes linearization of the model and 

requires constraints. 

 

In the last several years, machine learning techniques have 

been employed to address some of the most intractable 

multidimensional decision problems. This new class of 

methods has shown promise in areas as diverse as hearing-

aid signal improvement, particle physics, and more 

recently, geophysics (Hijazi et al., 2016; Abazov et. al., 

2011; Araya-Polo, et al., 2017). 

 

In this paper, a new semblance-based auto-picking method 

is described. The method first makes use of many attributes 

to lessen the noise that a semblance-only auto-picker would 

struggle with. Next, the best pick locations are determined 

using a machine learning clustering algorithm. The full 

methodology and results are described below.  

 

Method 

 

It is well known that semblance-only auto-pickers are too 

vulnerable to noise and will not give desired results (Toldi, 

1989). To develop a semblance-based auto-picker, one 

must include other attributes that mitigate the impact that 

noisy CMP gathers have on semblance.  

 

More than 10 attributes were tested in developing the 

proposed method, but many were found to virtually 

replicate semblance in performance.  Six attributes were 

eventually settled upon to create a system where noise can 

be better separated from signal. Once this 6-dimensional 

space is occupied, the events falling into a select region of 

the space are projected into the velocity-time plane. The 

velocity-time distribution is represented by equation 1: 

 

                                         ∏   
   
                           ( 1 ) 

 

where    represents the filtering coefficient for that 

attribute,     is the location in velocity-time space of that 

point, and     is the projected value of the element in 

velocity-time space. P is binary and has a value of either 

zero or one, where points with a value of zero are dropped. 

Neighboring CMP gathers are used to help reduce the 

impact from anomalously noisy gathers. 

 

After occupying the velocity-time space with these points, 

a machine learning clustering algorithm is deployed. The 

derived cluster centers are then used to map the velocity 

guide onto a new set of velocity picks.  

 

Attributes 

 

Three categories of attributes are used in this method. First 

is semblance, which is essentially a measure of coherence 

across offsets. The more coherent a CMP gather is after 

NMO, the higher it will be in Semblance.   

  

Another attribute that is considered is the AVO auto-

picking method. This method is based on Swan’s method 

for residual velocity analysis using the AVO intercept and 

gradient traces (Swan, 2001). The intercept and gradient 

traces are used to compute a “residual velocity indicator” 

(RVI) trace, which is then used to compute a new velocity 

table. Due to the requirement that the initial velocity guess 

be within 5% of the correct velocity, this attribute is 

optional. 
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Figure 1: a) semblance of CMP gather, b) clustering of attributes 

with cluster centers and c) guide velocity with machine learning 

picked velocity 

 

Finally, two attributes that measure the continuity of a 

gather across offset are used. These have some similarities 

to semblance, but are not completely correlated. In the 

marine dataset shown in the next section, a filter on all 

attributes contains on average 60% of the number of events 

that would result from filtering the semblance alone. For 

the land dataset, as few as 30% of the events that pass 

through a semblance-only filter pass through a filter of all 

attributes. 
 

Clustering 

 

Figure 1 shows a graphical representation of the method. 

For each sample in the typical marine semblance plot of 

figure 1a, equation 1 is applied, and each attribute is then 

filtered. Each filter is set using an input parameter and 

determines if that point lies within the region of interest for 

that attribute. In this example, a user could set the 

parameters such that all red points in figure 1a were given a 

filter value of 1 and all non-red points were given a filter 

value of 0, thus eliminating them from the machine 

learning clustering point set. Figure 1b shows the point set 

that is used by the machine learning clustering algorithm. 

The blue points represent the points that passed all the 

attribute filters and the red points are the cluster centers 

found by the machine learning clustering algorithm. After 

the cluster centers have been determined, the final step is to 

map the velocity guide onto the cluster centers. Figure 1c 

shows the velocity guide in yellow along with the resulting 

velocity mapping onto the cluster centers in red. NMO was 

applied to this CMP gather with both velocities and the 

results are shown in the next section (Figure 2).  

 

Real data examples 

 

Two examples are shown below for the velocity auto-

picker. One example is a CMP shot gather from a marine 

survey, and the other is a stack of the Teapot Dome 3D 

land survey (a publicly available survey, see 

acknowledgements for more information). 

 

For the marine dataset case, Figure 2 shows a CMP gather 

with NMO applied from a) a velocity function hand-picked 

at the CMP location, b) a single velocity function picked 

from the center of the survey, and c) a velocity function 

from the new velocity auto-picking method using the 

single-picked function as a guide. The gather from the 

machine-picked velocity is virtually indistinguishable from 

the gather with the hand-picked velocity. The CMP gather 

is 10 km away from the single pick, suggesting that picking 

can be reduced by up to 90% in marine surveys of similar 

character, while still maintaining a quality velocity model. 

The difference between the machine learning auto picker 

velocity and the guide velocity is slightly more than 5% for 

this gather, making it a good candidate to display the 

separation power of the new method in an area where the 

AVO picker is expected to break down.  
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Figure 2: NMO applied to CMP gather with a) hand-picked 
velocities, b) single velocity picked in center of survey and c) 

machine learning auto-picker  

 

 

For the Teapot example, a stack is shown in Figure 3 and 

stacking velocities are shown in Figure 4 from four 

different velocities: a) a sparsely-picked brute velocity, b) a 

semblance auto-picker, c) an AVO auto-picker, and d) the 

machine learning auto-picker. These velocities were picked 

prior to any noise attenuation in an attempt to display the 

power of the machine learning auto-picker. Prior to noise 

attenuation, semblance-based auto-pickers suffer greatly, as 

displayed by Figures 3b and 4b. The AVO auto-picker 

updates the brute velocity (Figure 4c); however, the update 

is small due to the brute velocities being relatively far from 

the correct velocity, leading to a marginal change in the 

stack (Figure 3c). Only the machine learning auto-picker 

shows a considerable update to the velocity (Figure 4d). 

These updates lead to a substantially improved stack over 

the brute stack (Figure 3d). Red arrows are added to the 

stacks to accentuate the areas where the stack has 

improved.  

 

Conclusion 

 

Velocity auto-picking is a notoriously difficult problem to 

solve. Some authors developed modified semblance 

methods that use attributes in conjunction with semblance 

to mitigate the issues with semblance-only auto-pickers 

(Toldi, 1989), while others attempted other methods such 

as measuring amplitude variations across a CMP gather 

(Swan, 2001; Ratcliffe & Roberts, 2003). 

 

This new method utilizes both semblance-based auto-

picking and AVO auto-picking along with two other 

attributes to create a modified semblance auto-picker. This 

unique combination of attributes creates a cleaner point set 

that has more separation power than semblance alone. 

Using this point set, an unsupervised machine learning 

algorithm optimizes new velocity picks.  

 

This method has been shown to be effective in two very 

different data sets. One dataset is marine, while the other is 

a land dataset prior to any noise attenuation. These two 

examples display the potential that this method has in 

reducing velocity picking time, and in turn, processing cost 

for a seismic project.  
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Figure 3: Teapot Dome stack with a) brute velocities, b) semblance auto-picked velocities, c) AVO auto-picked velocities, and d) machine 

learning auto-picked velocities. XLINE spacing is 110 feet. Red arrows accentuate areas of improvement.  
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Figure 4: Stacking velocities for a) brute, b) semblance auto-picker, c) AVO auto-picker and d) machine learning auto-picker 
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