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SUMMARY 

__________________________________________________________________________________ 

Non Local Means (NLM) filtering is a well-known image-processing algorithm for random noise 
attenuation. It is based on the assumption that coherent and non-coherent features can be identified 
and separated using a measure of similarity between adjacent samples. In this paper we review and 
extend previous work on the use of NLM in seismic data processing. Our objective is to improve the 
computational efficiency of the method and investigate practical aspects of its implementation and 
application. Synthetic and real data examples demonstrate the achieved improvements. 
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Introduction 

The reduction of non-coherent noise is a key aspect of seismic data processing. While f-x and f-x-y 
deconvolution are extensively used for this purpose and known to be robust and effective, the 
increased bandwidth of broadband data prompts for more sophisticated algorithms, in particular with 
edge-preservation capabilities. The Non Local Means (NLM) algorithm is, in this respect, a promising 
option. Originally developed by Buades et al. (2005) for digital image processing applications, it was 
later applied by Bonar and Sacchi (2012) to seismic data processing. In their paper, Bonar and Sacchi 
prove the reliability of the algorithm on time slices of a spectrally-decomposed volume and on post-
stack cross-sections. However, while the quality of the obtained results is indisputable, the high 
computational cost of the algorithm makes its use problematic, in particular for 3D applications. 
Maraschini and Turton (2013) suggest a windowed application to partially address this issue. We 
propose a revised NLM algorithm aimed at improving computational efficiency while maintaining the 
noise reduction capability. 

Non Local Means filtering 

We begin with a concise description of the NLM algorithm. If ���� is the amplitude of sample � and ���� the amplitude of one of m samples � not necessarily in the vicinity of �, a filtered value �����	 is 
obtained as: 

                         

In other words, �����	is a weighted mean of sample values in a given window. The weights ���, �� 
depend on a measure of relative distance (or “similarity”) 
���, �� between the reference sample � and 
the � samples �. This leads to assigning a higher weight to samples that have consistent amplitudes. 
As consequence, structures and coherent features are preserved while random noise is attenuated. The 
filtering harshness is controlled by the parameter ℎ. The similarity between patches is computed as: 


���, �� =������ ��������� − � ����������
�

 

The term ���� is the � − �ℎ element of a normalized convolutional kernel � that balances the overall 
similarity between the reference neighbourhood patch �� around sample i and the corresponding 
comparison patch �� around sample j. Standard NLM filtering is applied to 2D images using square 
neighbourhoods and square windows. In this case, the complexity of this algorithm is  ×�� × "� 
where n is the number of samples of the image to be filtered, m is the size of the window and k is the 
size of the patches. NLM is well suited to be parallelized but further adjustments to the algorithm are 
required in order to make its 3D application to 3D data feasible in practice. We therefore discuss the 
following three key issues: 

• use of specific convolutional kernels; 
• anisotropy of the kernel and use of non-square comparison patches and windows; 
• reference patch weight. 

The convolving kernel smooths the similarity measure between patches and indirectly determines 
their size, and therefore the computational cost of the algorithm. Previous authors base their work on a 
Gaussian kernel. Such a kernel balances the similarity measure in favour of the elements closer to the 
central part of the patch. In practice however, a similar effect can be obtained using smaller patch 
sizes in combination with triangular or uniform kernels. We illustrate this in Figure 1 where Gaussian, 
triangular and uniform kernels are superimposed. Additionally, for an n-D extension of the algorithm, 
kernel anisotropy can also be introduced. A 1D kernel can be viewed as an anisotropic kernel in 
which smoothing occurs in just one out of many dimensions available. On cross-line or in-line gathers 
we exploit this behavior to better address signal recognition. In seismic data, the signal to be 
preserved is essentially a repetition of an elementary 1D wavelet along 2D or 3D structures that are 

����� = ∑ �� ��, ������
∑ �� ��, ��  with weights: ���, �� = $%& '−
���, ��

ℎ� ( 
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Figure 1 Various  kernels and associated patch 
sizes (left); reference patch in red and search 
window in white (right). 

sometimes horizontal or close to horizontal. 
We therefore choose 1D patches fully 
encompassing a reference wavelet or wavelet 
train (Figure 1, red box) in combination with 
rectangular search windows extended in the 
2D or 3D dipping structure direction (Figure 
1, white box). The size and orientation of the 
search window depends on geological dip as 
well as on faults and discontinuities that must 
be preserved. Finally, we investigate the 
weight to be assigned to the reference patch. 
During the comparison process within the 
search window, the similarity is a maximum 

when the reference patch slides exactly over itself. In this case, the assigned weights are artificially 
over-scaled with respect to all the others and can potentially compromise the ability of the NLM 
algorithm to separate coherent and non-coherent features. To avoid this problem, we exclude from the 
comparison process the reference patch and we assign to it a default value ��� = �)%�����. With this 
approach the reference patch is used in the weighted averaging but assumes a non-dominant weight. 

The three modifications just described reduce the complexity of the algorithm from  ×�� × "� to  ×�* ×�� × ", where the rectangular window is of size �* ×�� with �* ≪ �� = �, and 
improve the S/N enhancement thanks to a now optimized exploitation of the anisotropic convolution 
kernel, a properly sized search windows and a proper re-balancing of the weight assigned to the 
reference patch. Examples of the obtained advancements are described in the following section. 

Examples 

First, we show a synthetic example. This test is inspired by the example shown by Bonar and Sacchi 
(2012). A synthetic gather comprising crossing, curved, faulted and linear events (see Figure 2) is 
corrupted with Gaussian white noise, with a resulting SNR of about -5.5dB. f-x deconvolution and 
NLM are then compared in terms of noise removal and signal preservation. The developed 
modifications to the NLM algorithm are individually evaluated. With NLM0 we refer to the standard 
form of the algorithm, i.e. with square patches and search windows (19 traces x 19 samples wide) 
combined with a Gaussian kernel and ��� = 1. With NLM1 we compare the effect of considering 
��� = �)%����� and with NLM2 we additionally evaluate the use of a uniform kernel with 
rectangular search windows 31 traces x 11 samples wide and a 1D reference patch 13-samples long. 
The NLM smoothing parameter is h=0.2 for all cases. 

 
Figure 2 Synthetic data test. Signal (top) and noise (bottom). White corresponds to zero amplitude. 
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In Figure 2, f-x deconvolution filters most of the noise but signal is also partially removed. NLM0 
obtains a better noise removal but noise overlapping coherent events is excluded from the filtering 
process. Signal and noise separation is highly improved with NLM1. A similar result but with a 50% 
computational cost reduction can be obtained using a uniform kernel and a smaller (13 x13) reference 
patch (not shown in Figure 2). The computational cost is further reduced with the NLM2 test, about 29 
times less than the previous NLMs. In this case the noise removal capability is similar to f-x 
deconvolution but signal preservation is much better. 

Furthermore, NLM preserves edges and discontinuities. In Figure 3 we show a close-up of one of the 
discontinuities (black box in Figure 2). f-x deconvolution partially removes coherent energy and 
introduces smearing effects. NLM0 and NLM1 give improved results and NLM2 is smearing-free due 
to the use of a 1D reference patch. 

 
Figure 3 Synthetic data test. Close-up from the top row of Figure 2. 

We provide now a second test case on real data. We apply our revised NLM on a 3D pre-migration 
common-offset (135m) section and we evaluate the effects of extending the NLM algorithm to three 
dimensions. Benchmark of these tests is the result obtained on an inline section using a 1D reference 
patch of 15 time samples with a uniform kernel, 2D search windows 31x1x7 wide (cross-line x in-line 
x time samples) and a smoothing parameter h=0.5. We call it 1D2D test and we show a comparison 
between a detail of the input and the corresponding NLM result in Figure 4. Incoherent energy is well 
removed and the continuity of the events appears properly maintained. Reduction of noise content is 
quite homogeneous across the entire section (not shown for brevity).  

 

Figure 4 Real data common-offset test. Detail of input and NLM output. Close-up to better visualize 
the noise reduction (white box). 
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We compare this result with a search window extension to 31x3x7 including 3 in-lines (1D3D test) 
and further extension of the reference patch to size 1x3x15 (2D3D test). We evaluate the results by 
comparing the noise detected by the different configurations as the difference between the input and 
the output, scaled by a factor of 10 for better visualization. Results are shown in Figure 5.  

 

Figure 5 Common-offset  test. Data and detected noise (×10). White corresponds to zero amplitude. 

In 1D2D we detect noise homogeneously but the main structure is clearly visible in the difference 
section. In 1D3D, despite a 10% increment of the smoothing parameter, the signal is better preserved, 
but the computational speed is three times slower. In 2D3D the signal-noise separation is only slightly 
improved, but at great computation cost increase. The increase in filtering harshness requires a milder 
smoothing parameter (h=0.40) and   the computational cost of this test is nine times bigger than the 
benchmark. 

Conclusions 

Our revised NLM algorithm gives improved results in seismic data processing applications. We focus 
on the improvements obtainable on sections rather than on time slices. We achieve better noise 
reduction and signal preservation, both with a reduced computational cost. The key elements of the 
proposed changes are a proper re-balancing of the weight assigned to the reference patches,  an 
optimized  combination of reference patch and search window sizes and the use of anisotropic 
uniform kernels.  The extension of the algorithm to more dimension improves further the SNR 
enhancement capability but with a consequent reduction of the computational speed. Our tests show 
that the extension of the search windows to 3D while maintaining the reference patch 1D gives 
satisfactory results. The signal and its discontinuities are well preserved and incoherent noise is 
attenuated. 
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