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Practical Aspects of Non Local Means Filtering of Seismic Data
Carlo De Gaetani, Samuel Winters, Janet Barnegj&@rion, Dolphin Geophysical Ltd.

SUMMARY

Non Local Means (NLM) filtering is a well-known irga-processing algorithm for random noise

attenuation. It is based on the assumption thaeresth and non-coherent features can be identified
and separated using a measure of similarity betvaefacent samples. In this paper we review and
extend previous work on the use of NLM in seismatadprocessing. Our objective is to improve the
computational efficiency of the method and investiggpractical aspects of its implementation and
application. Synthetic and real data examples dsimate the achieved improvements.
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Introduction

The reduction of non-coherent noise is a key aspiestismic data processing. White andf-x-y
deconvolution are extensively used for this purpasd known to be robust and effective, the
increased bandwidth of broadband data prompts imersophisticated algorithms, in particular with
edge-preservation capabilities. The Non Local M&atdM) algorithm is, in this respect, a promising
option. Originally developed by Buades et al. (20f@6 digital image processing applications, it was
later applied by Bonar and Sacchi (2012) to seistata processing. In their paper, Bonar and Sacchi
prove the reliability of the algorithm on time & of a spectrally-decomposed volume and on post-
stack cross-sections. However, while the qualitythd obtained results is indisputable, the high
computational cost of the algorithm makes its usablematic, in particular for 3D applications.
Maraschini and Turton (2013) suggest a windowediegion to partially address this issue. We
propose a revised NLM algorithm aimed at improviognputational efficiency while maintaining the
noise reduction capability.

Non L ocal Meansfiltering

We begin with a concise description of the NLM aigon. If v(i) is the amplitude of sampleand
v(j) the amplitude of one ah sampleg not necessarily in the vicinity of a filtered valued(i) is
obtained as:

—D?(i, )

w(i,j) = exp <T> with weights: $(i) = M

In other words,p(i) is a weighted mean of sample values in a given evindlrhe weightsv(i, j)
depend on a measure of relative distance (or “aiityl) D(i,j) between the reference samplkend
them sampleg. This leads to assigning a higher weight to sasfilat have consistent amplitudes.
As consequence, structures and coherent featurgweserved while random noise is attenuated. The
filtering harshness is controlled by the paramktérhe similarity between patches is computed as:

2
D2(i,j) = Z k@ (U(Ni(l)) —v (N,-(z)))]
l
The termK (1) is thel — th element of a normalized convolutional kerKethat balances the overall
similarity between the reference neighbourhood tpalc around sampleé and the corresponding
comparison patchV; around sample¢ Standard NLM filtering is applied to 2D imagesngsquare
neighbourhoods and square windows. In this cagectimplexity of this algorithm ia x m? x k2
wheren is the number of samples of the image to be &ttem is the size of the window aridis the
size of the patches. NLM is well suited to be galizkd but further adjustments to the algorithra ar
required in order to make its 3D application to @&la feasible in practice. We therefore discuss the
following three key issues:

» use of specific convolutional kernels;
» anisotropy of the kernel and use of non-square eoisipn patches and windows;
» reference patch weight.

The convolving kernel smooths the similarity measbetween patches and indirectly determines
their size, and therefore the computational coshefalgorithm. Previous authors base their worka on

Gaussian kernel. Such a kernel balances the sityitaeasure in favour of the elements closer to the
central part of the patch. In practice howeverjnailar effect can be obtained using smaller patch
sizes in combination with triangular or uniform kels. We illustrate this in Figure 1 where Gaussian
triangular and uniform kernels are superimposedlit#hahally, for an n-D extension of the algorithm,

kernel anisotropy can also be introduced. A 1D &kan be viewed as an anisotropic kernel in
which smoothing occurs in just one out of many disiens available. On cross-line or in-line gathers
we exploit this behavior to better address sigmognition. In seismic data, the signal to be
preserved is essentially a repetition of an eleargntD wavelet along 2D or 3D structures that are
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sometimes horizontal or close to horizontal.
We therefore choose 1D patches fully
encompassing a reference wavelet or wavelet
train (Figure 1, red box) in combination with
rectangular search windows extended in the
2D or 3D dipping structure direction (Figure
1, white box). The size and orientation of the
search window depends on geological dip as
well as on faults and discontinuities that must

. . , be preserved. Finally, we investigate the
Figure 1 Various kernels and associated patch eight to be assigned to the reference patch.

si;es (I?ft); _refergncg patch in red and searc uring the comparison process within the
window in white (right search window, the similarity is a maximum
when the reference patch slides exactly over it¢elthis case, the assigned weights are artificial
over-scaled with respect to all the others and patentially compromise the ability of the NLM
algorithm to separate coherent and non-coheretirg=a To avoid this problem, we exclude from the
comparison process the reference patch and wenassiga default valuey;; = max(wi j). With this
approach the reference patch is used in the welghteraging but assumes a non-dominant weight.

patch size

>

A

e, N

The three modifications just described reduce tmaptexity of the algorithm fromm x m? x k? to

n X my X my, X k, where the rectangular window is of sizg X m, with m; K m, =m, and
improve the S/N enhancement thanks to a now opgichexploitation of the anisotropic convolution
kernel, a properly sized search windows and a propdéalancing of the weight assigned to the
reference patch. Examples of the obtained advanusree described in the following section.

Examples

First, we show a synthetic example. This test spired by the example shown by Bonar and Sacchi
(2012). A synthetic gather comprising crossing,vedr faulted and linear events (see Figure 2) is
corrupted with Gaussian white noise, with a resgltsNR of about -5.5dB-x deconvolution and
NLM are then compared in terms of noise removal aighal preservation. The developed
modifications to the NLM algorithm are individualgvaluated. With NLM we refer to the standard
form of the algorithm, i.e. with square patches amdrch windows (19 traces x 19 samples wide)
combined with a Gaussian kernel amg = 1. With NLM; we compare the effect of considering
w;; = max(w;;) and with NLM, we additionally evaluate the use of a uniform lebrmith
rectangular search windows 31 traces x 11 samplés and a 1D reference patch 13-samples long.
The NLM smoothing parameters0.2 for all cases.

input - fxdecon

NLM,

Es L el ) S grstt s ot

Figure 2 Synthetic data test. Signal (top) and noise (lo}jtdVhite corresponds to zero amplitude.
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In Figure 2,f-x deconvolution filters most of the noise but sigisahlso partially removed. NLM
obtains a better noise removal but noise overlappwherent events is excluded from the filtering
process. Signal and noise separation is highlyorgmt with NLM,. A similar result but with a 50%
computational cost reduction can be obtained uaiogiform kernel and a smaller (13 x13) reference
patch (not shown in Figure 2). The computationat ¢® further reduced with the NLMest, about 29
times less than the previous NLMs. In this case nb&se removal capability is similar tx
deconvolution but signal preservation is much bette

Furthermore, NLM preserves edges and discontisuitieFigure 3 we show a close-up of one of the
discontinuities (black box in Figure 2fx deconvolution partially removes coherent energg an
introduces smearing effects. Nl,Mnd NLM, give improved results and NLMs smearing-free due
to the use of a 1D reference patch.
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Figure 3 Synthetic data test. Close-up from the top rowigtire 2.
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We provide now a second test case on real dataapWly our revised NLM on a 3D pre-migration
common-offset (135m) section and we evaluate tfex®f of extending the NLM algorithm to three
dimensions. Benchmark of these tests is the restgtined on an inline section using a 1D reference
patch of 15 time samples with a uniform kernel,sdarch windows 31x1x7 wide (cross-line x in-line
X time samples) and a smoothing parambt€).5. We call it 1D2D test and we show a comparison
between a detail of the input and the corresponiinigl result in Figure 4. Incoherent energy is well
removed and the continuity of the events appeaipegply maintained. Reduction of noise content is
quite homogeneous across the entire section (oetrsfor brevity).
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Figure4 Real data common-offset test. Detail of input Blihdl output. Close-up to better visualize
the noise reduction (white box).
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We compare this result with a search window extensd 31x3x7 including 3 in-lines (1D3D test)
and further extension of the reference patch te $3x15 (2D3D test). We evaluate the results by
comparing the noise detected by the different goméitions as the difference between the input and
the output, scaled by a factor of 10 for bettevaization. Results are shown in Figure 5.

data . | 1D2Dh050  1D3Dh055 | 2D3Dh0.40

Figure5 Common-offset test. Data and detected noise (AB)jte corresponds to zero amplitude.

In 1D2D we detect noise homogeneously but the meincture is clearly visible in the difference
section. In 1D3D, despite a 10% increment of theathing parameter, the signal is better preserved,
but the computational speed is three times slome2D3D the signal-noise separation is only slightl
improved, but at great computation cost increase. ificrease in filtering harshness requires a milde
smoothing parameteh£0.40) and the computational cost of this testimge times bigger than the
benchmark.

Conclusions

Our revised NLM algorithm gives improved resultsgismic data processing applications. We focus
on the improvements obtainable on sections ratfn ton time slices. We achieve better noise
reduction and signal preservation, both with a ceducomputational cost. The key elements of the
proposed changes are a proper re-balancing of thghtvassigned to the reference patches, an
optimized combination of reference patch and $eavmdow sizes and the use of anisotropic

uniform kernels. The extension of the algorithmnhore dimension improves further the SNR

enhancement capability but with a consequent remtucif the computational speed. Our tests show
that the extension of the search windows to 3D evhilaintaining the reference patch 1D gives

satisfactory results. The signal and its discouritiies are well preserved and incoherent noise is
attenuated.
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