


## $Q_{|}$

### Remote monitoring of nuclear fission events - The ultimate solution

#### **Key Features**

- Operate alone or as an multiple unit array
- Reliable and flexible
- Cover a large geographic area
- Plug and play with deployment in 2 hours
- Ease of use start and stop with the press of a button and automatic operation
- Small easy to transport and install
- Low cost of ownership





| Specifications                      |                        |
|-------------------------------------|------------------------|
| Sample interval                     | 12 h                   |
| Stable xenon volume per sample      | 1.2 ml at STP          |
| MDC of <sup>133</sup> Xe            | 0.4 mBq/m³             |
| MDC of <sup>133</sup> mXe           | 0.3 mBq/m³             |
| MDC of <sup>131</sup> mXe           | 0.3 mBq/m³             |
| MDC of <sup>135</sup> Xe            | 1.0 mBq/m <sup>3</sup> |
| Cross-contamination between samples | < 1 %                  |
| Carrier gas                         | Nitrogen               |
| Gas consumption                     | 200 liter/day          |
| Mean power consumption              | 900 W                  |
| Peak power consumption              | 1400 W                 |
| Weight                              | 360 kg                 |
| Footprint                           | 72 cm by 108 cm        |

 $Q_B$  is a fully automatic system for remote detection, characterization, and source localization of radioactive xenon gas in the atmosphere.  $Q_B$  detects radioactive decays in sampled Xe gas by beta-gamma coincidence. The energy calibration is automatically corrected for drift during operation.

Easy installation: simply connect power and nitrogen, then press a button. Although it can operate alone,  $Q_B$  is designed to operate in an array of several units spread out across a large geographic area. The array concept improves coverage and source localization compared to a single unit. Repairs are also simplified since units in the array can be replaced with spare units while they undergo maintenance at the factory.



 $Q_{|}$ 

# Remote monitoring of nuclear fission events - The ultimate solution



#### For more information, please contact:

Scienta Sensor Systems AB PO BOX 15120 SE-750 15 UPPSALA SWEDEN

T: +46 18 480 58 00

E: info@sensorsystems.se