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Summary 

 

Greedy algorithms based on matching pursuit have received 

a lot of attention in recent times because of their ability to 

produce accurate, sparse, high-resolution representation of 

signals even when the input data are aliased. However, given 

the heuristic nature of the algorithms of this family, similar 

performances in terms of accuracy and quality of the signal 

representation come with very different computational costs 

and runtimes. We compare two matching pursuit alternatives 

in the context of the computation of 3D linear Radon 

transform: the basic and the orthogonal matching pursuit 

algorithms. We compare the two approaches in terms of 

quality of the signal representation, sparsity in the 

transformed domain, and runtime. Despite the greater 

computational cost involved in solving a least-squares 

optimization for all coefficients in orthogonal matching 

pursuit, we observe faster convergence, which is due to a 

smaller number of matching pursuit iterations. The higher 

quality of the estimated coefficients leads to higher accuracy 

in signal representation, i.e. smaller final residual. Our 

results are consistent with previous comparisons of the two 

approaches already presented in the literature for the case of 

signal reconstruction from random measurements. 

 

Introduction 

 

Radon transform is a very important tool in seismic data 

processing. 3D input data are usually strongly aliased in the 

crossline direction, a condition that hinders the quality of the 

representation in the transformed domain. Greedy 

algorithms, such as matching pursuit, are designed to 

overcome the challenges faced by algorithms based on 

regular and periodic sampling of the input data. Successes 

include the computation of Fourier transforms for irregularly 

sampled data (Nguyen and Winnet, 2011), crossline 

interpolation (Hollander et al., 2012; Özbek et al. 2009; 

Vassallo et al., 2010), and the implementation of the Radon 

transform (Cao and Ross, 2017; Kamil and Özbek, 2017). 

The effectiveness of matching pursuit strategies is agreed 

upon, but a myriad of flavors and different variants of the 

basic matching pursuit idea exist: orthogonal matching 

pursuit (OMP) is a popular choice in the digital signal 

processing community because, by construction, it 

guarantees orthogonality of reconstructed signal and 

residual for each new model parameter added to the 

representation. Hollander et al. (2012) proposed OMP as a 

data interpolation strategy although, in their work, they 

suggested it should be ‘relaxed’ to decrease its 

computational cost. OMP is by construction more expensive 

than conventional MP since the size of the operator grows 

with the number of model parameters estimated and because 

a least-squares optimization problem involving all 

coefficients estimated up to the current iteration must be 

solved for each new parameter added to the representation. 

However, because of the imposed orthogonality between 

data and residual at each iteration, OMP requires fewer 

iterations to converge to the desired result. In this work, we 

compare two implementations of 3D linear Radon 

transform: one based on a conventional matching pursuit 

(Cao and Ross, 2017) and the other based on orthogonal 

matching pursuit (Hollander et al., 2012; Tropp and Gilbert 

2007). We benchmark the accuracy and quality of the image 

representation and reconstruction for different frequency 

bandwidths and different percentages of the total number of 

model parameters to be estimated in the transformed 

domain. 

 

The theory of matching pursuit 

 

Matching pursuit denotes a family of greedy procedures to 

obtain a representation of signals as a linear combination of 

the elements of a predefined basis. The signal representation 

can be sparse by construction since only the most energetic 

components are matched, and the algorithm stops once the 

maximum number of desired basis vectors has been used or 

the error between the input and the approximation falls 

below a user-defined threshold. The matching pursuit 

strategy can be adopted for the computation of sparse 3D 

linear Radon transforms (Cao and Ross, 2017) using the 

basis function 𝑔(𝑝𝑥, 𝑝𝑦; 𝜔) = 𝑒−𝑖𝜔(𝑝𝑥𝑥+𝑝𝑦𝑦). The algorithm 

iteratively picks the (𝑝
𝑥
, 𝑝

𝑦
)-component that carries the 

most energy and thus approximates the input signal as 

                   𝑓(𝑥, 𝑦; 𝜔) =  ∑ 𝑤𝑗𝑒−𝑖𝜔(𝑝𝑥
𝑗

𝑥+𝑝𝑦
𝑗

𝑦)
𝑗                     (1) 

in which 𝑤𝑗  represents the weight of the j-th (𝑝𝑥 , 𝑝𝑦)-

component. The formulation in the frequency domain is 

standard for the computation of the linear Radon transform 

for efficiency reasons.  

 

The main difference between matching pursuit and 

orthogonal matching pursuit flows are that the estimation of 

the weights of the identified components differ, otherwise 

they are very similar as follows:  

 

• Initialize the residual with the input data 𝑓(𝑥, 𝑦; 𝜔) 

• Project the residual to the Radon (𝑝𝑥, 𝑝𝑦) domain 

• Pick the most energetic component and add it to the 

signal representation 
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• If (OMP) solve a least-squares optimization problem 

for ALL the coefficients 𝑤𝑗  of the components that 

have been picked so far; 

• Compute the new residual by subtracting the current 

signal approximation from the input data 

• Iterate from step 2. Unless the residual is small enough 

or the max number of iterations has been reached. 

 

At each iteration, the orthogonal matching pursuit algorithm 

solves a least-squares inverse problem involving all the 

weights of all the components that have been identified up 

to that moment. The rationale of this approach is to minimize 

leakage during the greedy estimation of the components of 

the input signal 𝑓(𝑥, 𝑦; 𝜔), since the estimated residual is 

always orthogonal to the input signal because of the 

optimization step. 

 

Examples 

 

We use a synthetic example containing a limited number of 

events to assess the quality of the approximation obtained 

using MP and OMP. The optimization of the coefficients is 

done with a conjugate gradient (CG) scheme but because of 

the choice of the threshold, the algorithm is a de facto 

steepest descent. We tested reducing the threshold to run few 

iterations of CG but the results were marginally different and 

we decided to run all of the other comparisons with the least 

expensive setup. Figure 1 shows the comparison between the 

input data (left), the orthogonal matching pursuit (center) 

and the conventional matching pursuit round-trip (forward 

transform followed by the inverse transform) result. The 

parameterization is the same (30 Hz maximum frequency 

and 40% of the Radon coefficients to be used for the signal 

representation). The displays are clipped to 95% of the 

maximum amplitude in each panel. The orthogonal matching 

pursuit implementation produces a cleaner representation of 

the signal with fewer and weaker artefacts compared with 

the basic matching pursuit one. It is interesting to look at the 

signal in the Radon domain: matching pursuit allows us to 

automatically handle the sparseness of the signal, which is 

an attractive property, especially for 3D transforms of data 

that are not well sampled in at least one dimension. Figure 2 

shows the Radon transforms of the input data (Figure 1, left) 

obtained with the orthogonal and basic Matching Pursuit 

implementation. The basic matching pursuit implementation 

(Figure 2, right) of the Radon transform appears “smoother” 

than the orthogonal matching pursuit one (Figure 2, left). 

However, the orthogonal implementation focuses better the 

linear (planar) event in the input gather and the hyperbolic 

events have more compact support, i.e. higher resolution.  

 

In the second example, we use a common receiver gather 

extracted from the Volve dataset and shown in Figure 3. 

Volve is a field 200 km west of Stavanger in the Norwegian 

continental shelf, which was decommissioned in 2016 after 

8.5 years in operation. The full dataset includes two ocean-

bottom streamers acquisitions from 2002 and 2010. We use 

the PZ dataset from obtained from the 2002 survey.  Figure 

4 show with black squares the X and Y the positions of the 

 
Figure 1: Input synthetic data (left), forward and inverse 3D Radon transform computed using orthogonal matching pursuit (center), and 

conventional matching pursuit (right). Notice the higher level of noise using the basic matching pursuit scheme. The display is clipped at 95% for 
each panel. 
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sources and with a blue square the position of the receiver. 

Notice that the data have not been regularized. The gather 

contains 4579 traces and each trace is 7.5 s long and sampled 

at 4 ms. We compare the runtimes with different 

parameterizations with respect to a base case (20 Hz 

maximum frequency and 10% Radon coefficients) in Table 

1. Both implementations are single-node and multithreaded. 

Table 1 reports the benchmark for the orthogonal and 

conventional matching pursuit implementations for 

maximum frequencies of 20 Hz and 40 Hz and different 

percentages of the total number of Radon coefficients used 

to represent the signal. The benchmarks show that, at fixed 

maximum frequency, for both conventional and orthogonal 

matching pursuit implementations, the runtime increases 

linearly as function of the percentage of coefficients. 

However, the orthogonal matching pursuit runtime increases 

slower. This is due to least-squares optimization of the 

coefficients, which guarantees the orthogonality between the 

input signal and the residual at the current step and thus 

allows the algorithm to reach the tolerance threshold faster 

than the basic matching pursuit version.  

 

 
Figure 2: Forward Radon transform of the input synthetic gather: orthogonal matching pursuit (left), conventional matching pursuit (right) 

 
Figure 4: Acquisition geometry for the common receiver gather in Figure 

3: the black squares represent the locations of the sources and the blue 

square the location of the receiver. 

 
Figure 3: ‘Flattened’ 3D common receiver gather extracted from the Volve 
dataset. The horizontal axis is trace number. 
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By doubling the maximum frequency, the OMP runtime 

increases by a factor slightly less than eight times: doubling 

the frequency range implies twice as many frequencies and 

it also decreases the sampling in the (𝑝
𝑥

, 𝑝
𝑦

)-space, thus 

increasing by a factor 4 the number of coefficients in the 

Radon domain. However, the matching pursuit runtime is 

much higher because of the combined effect of the finer 

sampling of the (𝑝
𝑥
, 𝑝

𝑦
)-space and the slow convergence of 

the algorithm that we already discussed for the comparison 

at equal maximum frequency. The slow convergence of the 

basic matching pursuit algorithm is highlighted again from a 

different perspective in Table 2, where we compare the 

residuals at equal maximum frequency for the two 

algorithms.  The number in parentheses indicates the actual 

number of iterations required to reach the reported residual, 

which is expressed as a fraction of the initial value. The 

asterisk indicates that convergence (set at <0.1% of the 

initial residual energy) has been reached before the expected 

number of iterations (which depends on the percentage of 

coefficients and maximum frequency). It is interesting to 

observe that, for the case of Volve common receiver gather, 

orthogonal matching pursuit reaches convergence in 

essentially a fixed number of iterations. Even though each 

iteration is more computationally expensive than a matching 

pursuit iteration, there are significantly fewer iterations, and 

thus the total runtime accumulated over frequencies (see 

Table 1) reflects the faster convergence. 

Conclusions 

 

We compared the performances of two flavors of greedy 

algorithms applied to the computation of the 3D Radon 

transform: basic and orthogonal matching pursuit. 

Orthogonal matching pursuit performs better in terms of 

signal representation although the computational cost, i.e. 

the dimensionality of the operator grows with the number of 

iterations. Basic matching pursuit has a fixed computational 

cost per iteration, and every new coefficient to be estimated 

does not increase the computational complexity of the 

algorithm. However, the better reconstruction and data-

fitting properties of orthogonal matching pursuit allow faster 

convergence in the case of complex real data, which leads to 

lower overall computational cost compared to the basic 

matching pursuit implementation. The better performance of 

orthogonal matching pursuit has been already documented 

in the literature for the case of signal recovery from random 

measurements (Tropp and Gilbert, 2007), this work confirms 

the superiority to the basic matching pursuit scheme for 

multidimensional Radon transform of seismic data. 

 

Acknowledgments 

 

The authors thank Shearwater GeoServices for permission to 

publish this work and Equinor and the former Volve Licence 

partners for making the Volve dataset publicly available. 

 

 

Max Frequency [Hz] Coefficient [%] OMP residual % 

(iterations) 

MP residual % 

(iterations) 

 

20 

10 0.13 (1424) 15.5 (1424) 

20 0.099 (1440)* 3.88 (2849) 

40 0.099 (1440)* 0.24 (5698) 

 

40 

10 0.099 (1424)* 0.11 (5706) 

20 0.099 (1424)* 0.099 (5813)* 

40 0.099 (1424)* 0.099 (5813)* 
Table 2: Convergence behavior of the OMP and MP algorithms for different maximum frequencies and percentages of the total number of 
coefficients to estimate. The * indicates that convergence was reached before the maximum number of iterations; the number in parentheses 

indicates the actual number of iterations performed at maximum frequency. 

 

Max Frequency [Hz] Coefficient [%] OMP runtime MP runtime 

 

20 

10 1.00 1.12 

20 1.57                       2.23 

40 2.83 4.49 

 

40 

10 7.81 30.28 

20 9.99 49.00 

40 13.19 61.36 
Table 1: Runtimes factors for 20 Hz and 40 Hz maximum frequency and different percentages of the number of Radon coefficients estimated 

for the Volve dataset using basic and orthogonal matching pursuit. The 20 Hz, 10% coefficient case represents the reference. 
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